

High pressure transducers as transfer standards

Jens Könemann, Alexander Gluschko, Thomas Konczak, Wladimir Sabuga

Physikalisch-Technische Bundesanstalt, Bundesallee 100,

38116 Braunschweig, Germany

Workshop on **High Pressure Metrology for Industry**

Brno, Czech Republic, June 14, 2012

Outline

- Motivation
- PTB high-pressure infrastructure
- Calibration of pressure transducers
- Characteristics of pressure transducers
- Pressure transducers as transfer standards up to 1.0 GPa
- Layout of pressure transducers for 1.6 GPa
- Summary

High pressures for industry

Calibration of modern pressure transducers

Practical examples

PTB primary standard

- 1 GPa controlled-clearance type pressure balance equipped with 1 GPa piston –cylinder system: its A_0 traceable via calibration chain to three 5 cm² 10 MPa PCAs and its λ determined by FEA and RUS
- prior state of the art: extension to 1.4 GPa with a manganin manometer
- Sebacate and sebacate-petroleum mix as a pressure-transmitting medium
- Development of pressure generation system and new primary standard up to 1.6 GPa in framework of EMRP IND03

Calibration of pressure transducers I PB

PIB

Block diagram of the pressure generation and measurement system:

Impact on Transducers

- Temperature coefficient/environmental conditions constant temperature (ΔT <0.1 K)/humidity, determination of temperature coefficient β
- Long-term shifts of span reading of TS statistical evaluation of corrections
- Effect by power source power source with voltage of 100 VAC and frequency of 50 Hz used with a power supply regulator, hence negligible effect on the reading
- Effect by altitude and position

 Transducers required to set up in position -> no effect
- Effect by transient response relative change in the reading after fifteen min. and after applying pressure change at 1 GPa typically less than 10×10^{-6}

Calibration of pressure transducers II Ple

Guidelines according to DKD-R 6-1

Model equation:

$$\langle S \rangle = \frac{\langle V_{read} \rangle / (GV_{fv})}{P_n} K_{zero} K_{repeat} K_{reprod} K_{hyst}$$
Transfer factor Correction factors

(1) Zero point deviation

$$\propto \max \{|x_{2,0} - x_{1,0}|, |x_{4,0} - x_{3,0}|, |x_{6,0} - x_{5,0}|\}$$

(2) Repeatability

$$\propto \max\{(x_{3,j}-x_{3,0})-(x_{1,j}-x_{1,0}),|(x_{4,j}-x_{4,0})-(x_{2,j}-x_{2,0})\}$$

(3) Reproducibility

$$\propto \max\{(x_{5,j}-x_{5,0})-(x_{1,j}-x_{1,0}),|(x_{6,j}-x_{6,0})-(x_{2,j}-x_{2,0})\}$$

(4) Hysteresis

$$\propto \frac{1}{n} \cdot \left\{ \left(x_{2,j} - x_{1,0} \right) - \left(x_{1,j} - x_{1,0} \right) + \left| \left(x_{4,j} - x_{3,0} \right) - \left(x_{3,j} - x_{1,0} \right) \right| + \left| \left(x_{6,j} - x_{5,0} \right) - \left(x_{5,j} - x_{5,0} \right) \right| \right\}$$

Calibration of pressure transducers II PB

Guidelines according to DKD-R 6-1

Model equation:

$$\langle S \rangle = \frac{\langle V_{read} \rangle / (GV_{fv})}{P_n} K_{zero} K_{repeat} K_{reprod} K_{hyst}$$
Transfer factor Correction factors

Measurement uncertainty:

$$U = k \cdot \left(\sqrt{u_{LS}^2 + u_{amp}^2 + u_{zero}^2 + u_{repeat}^2 + u_{reprod}^2 + \left| \frac{S_{up/down} - S'}{S'} \right|^2} \right)$$

relative systematical deviation with S´ being slope of linear regression line of transducer

Transducer characteristics

Transducer characteristics

Quantity i	$u_{\rm i}$ /bar	
	1 kbar	10 kbar
Stability	1.2	1.2
Height difference	2.8e-4	4.7e-7
Resolution	0.57	0.57
Temperature	8.6e-3	8.7e-2
Zero-point deviation	0.87	0.87
Repeatability	0.29	0.29
Hysteresis	1.7	0.29
	2.3	1.6

Metrological Investigations of Pressure transducers

Example: APMP.M.P-S8

Long-term shift

Relative difference of $dR_{\rm c2}$ of the reading of two typical transducers in two consecutive series at the supplementary comparison *APMP.M.P-S8* measured at the pilot institute

Relative difference less than 50 ppm in the whole range

Long-term shift

Uncertainty contribution:
$$u_{LTS}^{2}(i) = 1/2 \sum_{m/transducer} \frac{dR_{c2}^{2}(m,i)}{3}$$

Uncertainty contribution less than 20 ppm

Short-term random errors

Uncertainty contribution:
$$u_{rdm}^{2}(i) = \langle \sigma_{i}^{2} \rangle$$

 $\sigma_{\rm i}$ standard deviation of measurement for each $P_{\rm n}({\rm i})$ related to short-term statistical errors

Uncertainty contribution less than 16 ppm

Temperature coefficient β

Correction for difference between nominal pressure and actual pressure

Zero-pressure offset correction

$$\beta(m,i) = \frac{1}{18} \cdot \sum_{q=1}^{3} \sum_{w=1}^{2} \sum_{y=1}^{3} \frac{R_{c1}^{q}(1,m,y,w,i) - R_{c1}^{0}(1,m,y,w,i)}{P_{n}(i) \cdot \left[t_{b}^{q}(1,y,w,i) - t_{b}^{0}(1,y,w,i)\right]}$$

Nominal pressure

 $t_b{}^q$ measured temperature around TS for qcorresponding to 20,21,22,23 °C

$$u\{\beta(m)\}=10/\sqrt{3}\times10^{-6} {\rm °C}^{-1}$$

Uncertainty due to temperature deviation

Uncertainty contribution:

$$u_{tem} = \frac{u\{\beta(i)\}}{P_{n}(i)} |\bar{t}(j,i) - t_{ref}|$$

Uncertainty contribution less than 8 ppm

Layout of TS

- TS consists of two types of electronic high precision pressure transducers (PTs) to ensure reliability
- Sensing element of PTs based on foil and thin-layer strain gauges
- Three PT pressure ranges (5,10,15) kbar to cover the technical capacities of other NMIs for comparisons
- TS involves measuring amplifier

Summary

- Investigation of the usability of modern pressure transducers for metrological purposes
- Demonstration of calibration of pressure transducers according to DKD-R 6-1 / practical examples
- Suitability of high-pressure transducers as transfer standards in international metrological comparisons
- Outlook: development of a transfer standard up to 1.5 GPa based on modern pressure transducers

Transducer characteristics

Quantity i	u _i /bar	
	1 kbar	10 kbar
Stability	1.2	1.2
Height difference	2.8e-4	4.7e-7
Resolution	0.57	0.57
Temperature	8.6e-3	8.7e-2
Zero-point deviation	0.87	0.87
Repeatability	0.29	0.29
Hysteresis	1.7	0.29
	2.3	1.6

